A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes.

نویسندگان

  • Alice Y Cheung
  • Shahriar Niroomand
  • Yanjiao Zou
  • Hen-Ming Wu
چکیده

Pollen tubes are highly polarized plant cells specialized in delivering sperm for fertilization. Pollen tube growth is rapid, occurs exclusively at the tip, and can reach distances thousands of times the diameter of the pollen grain without cell division, thus representing an excellent model system for studying asymmetric cell growth. In flowering plants, pollen tube growth is dependent on the actin cytoskeleton, which supports an efficient vesicle trafficking system to deliver membrane and cell-wall materials to the tube tip. A highly dynamic subapical actin structure and an apical vesicular zone are known to be critical for the tip-growth process. How this apical organization is maintained, how the subapical actin structure is assembled, and direct evidence for its functional coupling with tip growth remain to be established. Here, we show that a tip-located, cell membrane-anchored actin-nucleating protein, the Arabidopsis formin homology5 (FH5), stimulates actin assembly from the subapical membrane, provides actin filaments for vesicular trafficking to the apical dome, and mediates assembly of the subapical actin structure. Moreover, FH5-expressing pollen tubes provided a unique opportunity to demonstrate that assembly of the subapical actin structure is concomitant with the acquisition of rapid tip growth, providing further support for their functional coupling. Together, our results show that FH5 plays a pivotal role in establishing the subapical actin and apical vesicular organization critical for tip-focused growth in pollen tubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane.

Formins, actin-nucleating proteins that stimulate the de novo polymerization of actin filaments, are important for diverse cellular and developmental processes, especially those dependent on polarity establishment. A subset of plant formins, referred to as group I, is distinct from formins from other species in having evolved a unique N-terminal structure with a signal peptide, a Pro-rich, pote...

متن کامل

FIMBRIN1 is involved in lily pollen tube growth by stabilizing the actin fringe.

An actin fringe structure in the subapex plays an important role in pollen tube tip growth. However, the precise mechanism by which the actin fringe is generated and maintained remains largely unknown. Here, we cloned a 2606-bp full-length cDNA encoding a deduced 77-kD fimbrin-like protein from lily (Lilium longiflorum), named FIMBRIN1 (FIM1). Ll-FIM1 was preferentially expressed in pollen and ...

متن کامل

ROP Gtpase–Dependent Dynamics of Tip-Localized F-Actin Controls Tip Growth in Pollen Tubes

Tip-growing pollen tubes provide a useful model system to study polar growth. Although roles for tip-focused calcium gradient and tip-localized Rho-family GTPase in pollen tube growth is established, the existence and function of tip-localized F-actin have been controversial. Using the green fluorescent protein-tagged actin-binding domain of mouse talin, we found a dynamic form of tip-localized...

متن کامل

The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes.

Pollen tube elongation is a polarized cell growth process that transports the male gametes from the stigma to the ovary for fertilization inside the ovules. Actomyosin-driven intracellular trafficking and active actin remodeling in the apical and subapical regions of pollen tubes are both important aspects of this rapid tip growth process. Actin-depolymerizing factor (ADF) and cofilin are actin...

متن کامل

A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes

Tip growth in neuronal cells, plant cells, and fungal hyphae is known to require tip-localized Rho GTPase, calcium, and filamentous actin (F-actin), but how they interact with each other is unclear. The pollen tube is an exciting model to study spatiotemporal regulation of tip growth and F-actin dynamics. An Arabidopsis thaliana Rho family GTPase, ROP1, controls pollen tube growth by regulating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 37  شماره 

صفحات  -

تاریخ انتشار 2010